distance closer than $6.7 \AA$. The coordination geometry about Pt is planar but distorted from square planarity. The $\mathrm{Pt}, \mathrm{S}(1), \mathrm{S}(2), \mathrm{P}(1)$ and $\mathrm{P}(2)$ atoms all lie within 0.092 (4) \AA of the best least-squares plane through those atoms. The respective bond angles $\mathrm{S}(1)-\mathrm{Pt}-\mathrm{S}(2)$, $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2), \mathrm{S}(1)-\mathrm{Pt}-\mathrm{P}(1)$ and $\mathrm{S}(2)-\mathrm{Pt}-\mathrm{P}(2)$ are $87.7(1), \quad 99.0(1), \quad 85.1(1)$ and $88.4(1)^{\circ}$. The $\mathrm{S}(1)-\mathrm{Pt}-\mathrm{S}(2)$ bond angle of 87.7 (1) ${ }^{\circ}$ is significantly larger than the $\mathrm{S}-\mathrm{Pt}-\mathrm{S}$ angle of $83.14(8)^{\circ}$ in the compound cis- $\mathrm{Pt}(\mathrm{SH})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$. The difference is likely due to the conformational requirements of the thiaplatinacycle. This thiaplatinacycle is a five-membered ring with the C atoms in a staggered conformation. The angles about the two ring C atoms, $S(1)-C(1)-C(2)$ and $S(2)-C(2)-C(1)$, are both $112(1)^{\circ}$ as expected for saturated hydrocarbons. The $C(1)-C(2)$ bond distance of 1.45 (2) \AA is considerably shorter than the usual value of $1.54 \AA$ for such bonds. Thermal motion may be contributing to this apparent shortening.

The deviation of the $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$ bond angle of $\mathrm{Pt}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ from 90° can be accounted for by steric interactions of the triphenylphosphine groups. The $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$ angle of $99.0(1)^{\circ}$ is larger than 97.65 (7) $)^{\circ}$ found in cis- $\mathrm{Pt}(\mathrm{SH})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$. The bondangle difference between $\mathrm{S}(1)-\mathrm{Pt}-\mathrm{P}(1)$ of $85.1(1)^{\circ}$, and $\mathrm{S}(2)-\mathrm{Pt}-\mathrm{P}(2)$ of $88.4(1)^{\circ}$ is unanticipated, but all non-bonded intermolecular $\mathrm{S} \cdots$...phenyl hydrogen interactions are too long to cause any such distortions. The structure can therefore be described as a planar, monomeric, slightly distorted thiametallacycle with a puckered ring.

We wish to thank Professor R. D. Willett for assistance and discussion.

References

Briant, C. E., Hughes, G. R., Minshall, P. C. \& Mingos, D. M. P. (1980). J. Organomet. Chem. 202, C 18-C20.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). OrFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). orffe. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee.
Hayter, R. G. \& Humiec, F. S. (1964). J. Inorg. Nucl. Chem. 26, 807-810.
Hofmann, K. A. \& Rabe, W. O. (1897). Z. Anorg. Allg. Chem. 14, 293-296.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Lai, R. D. \& Shaver, A. (1981). Inorg. Chem. 20, 477-480.
main, P., Fiske, S. J., Hull, S. E., Lessinger. L., Germain, G., Declerce, J. P. \& Woolfson, M. M. (1980). multan 80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Rauchfuss, T. B. \& Roundhill, D. M. (1975). J. Am. Chem. Soc. 97, 3386-3392.
Rauchfuss, T. B., Shu, J. S. \& Roundhill, D. M. (1976). Inorg. Chem. 15, 2096-2101.
Schmidt, V. M. \& Hoffman, G. G. (1980). Z. Anorg. Allg. Chem. 464, 209-216.
Wehe, D. J., Busing, W. R. \& Levy, H. A. (1962). orabs. Report ORNL-TM-229. Oak Ridge National Laboratory, Tennessee.

Structure of trans-Dichlorobis(1-methylimidazole)palladium(II), $\left[\mathrm{Pd}\left(\mathrm{C}_{4} \mathbf{H}_{6} \mathbf{N}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$

By M. C. Navarro-Ranninger
Departamento de Química Inorgánica, Universidad Autónoma de Madrid, Canto Blanco, Madrid-34, Spain

and S. Martínez-Carrera and S. García-Blanco
Departamento de Rayos X, Instituto de Química Fisica 'Rocasolano', Consejo Superior de Investigaciones Científicas, Serrano 119, Madrid-6, Spain
(Received 25 May 1982; accepted 19 October 1982)

Abstract

M_{r}=341.52\), monoclinic, $\quad P 2_{1} / c, \quad a=$ $5.1278(1), \quad b=11.636(1), \quad c=10 \cdot 168(1) \AA, \quad \beta=$ $97.402(4)^{\circ}, \quad V=601.64(4) \AA^{3}, \quad \lambda(\operatorname{Ag} K \alpha)=$ $0.5608 \AA, \quad Z=2, \quad D_{x}=1.885 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu(\mathrm{Ag} K \alpha)=$ $9.85 \mathrm{~cm}^{-1}, F(000)=306, T=298 \mathrm{~K}$. Final $R=0.040$ for 2162 reflections. The Pd atom lies on a symmetry centre, all other atoms are in general positions.

0108-2701/83/020186-03\$01.50

Introduction. The study of imidazole complexes with transition-metal ions is of interest as the ligand is closely related to biological systems involving the histidine residue.

On the other hand, although coordination compounds of $\mathrm{Pt}^{\mathrm{II}}$ and $\mathrm{Pd}^{\mathrm{II}}$ have been known for more than a century (Kauffman, 1976), the coordination chemis© 1983 International Union of Crystallography
try of palladium and platinum has recently taken on increased interest, due to the antitumour properties of certain amine-halide compounds, such as cis$\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$ (Stone, Kelman \& Sinex, 1974; Marcelis, Canters \& Reedijk, 1981; Brouwer, Van de Putte, Fichtinger-Schepman \& Reedijk, 1981).

As part a programme of structural investigation of palladium complexes, in the present paper the crystal structure of trans-dichlorobis(1-methylimidazole)palladium(II) is discussed. The published space group and cell dimensions are incorrect (Navarro-Ranninger, 1979).

Experimental. Single crystals of trans-Pd(NMeIm) $)_{2} \mathrm{Cl}_{2}$, NMeIm $=1$-methylimidazole, grown as described previously (Navarro-Ranninger \& Gayoso, 1978); long needles from alcoholic solutions of PdCl_{2} and NMeIm; crystal used: $0.10 \times 0.30 \times 0.10 \mathrm{~mm}$, cleaved from a larger one; crystal system, space group and approximate unit-cell parameters from Weissenberg and precession photographs; accurate unit-cell parameters by least-squares analysis of setting angles of 67 reflections, Philips PW 1100 four-circle diffractometer; intensities recorded in $\omega / 2 \theta$ scan mode [scan width $1.7^{\circ}(\theta)$, scan speed $\left.0.034^{\circ}(\theta) \mathrm{s}^{-1}\right], \theta$ between 2 and 25° (maximum h, k, l 7,17,15), with graphite-monochromated $\mathrm{Ag} K \alpha$ radiation; 2162 reflections measured ($R_{\text {int }}=0.017$), 1466 with $I>2 \sigma(I), \sigma$ from counting statistics; two standard reflections $(060,0 \overline{6} 0)$ measured every 90 min with no significant variation in either intensity or position; data corrected for absorption.

Pd and Cl positions from three-dimensional Patterson synthesis, remaining non-hydrogen atoms from subsequent Fourier map; refinement by full-matrix least-squares method, anisotropic thermal parameters, function minimized $\sum w \Delta F^{2}$; three-dimensional Fourier synthesis showed all H atoms; anisotropic (nonhydrogen) and isotropic (H) refinement gave $R 0.040$, $R_{w}=0.047$, with unit weights; difference syntheses showed no significant features; calculations carried out with the XRAY system (Stewart, Kundell \& Baldwin, 1970), Univac 1100/80 computer; scattering factors and anomalous-dispersion corrections from $I n$ ternational Tables for X-ray Crystallography (1974).*

Discussion. Fig. 1 shows a view of the complex and the atom numbering. The final atomic parameters are given in Table 1, Table 2 shows interatomic distances and angles.
${ }^{*}$ Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and torsion angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38192 (19 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

The complex consists of monomeric $\mathrm{Pd}(\mathrm{NMeIm})_{2} \mathrm{Cl}_{2}$ units. The imidazole ring is planar, with no atom deviating from the least-squares plane through the five atoms by more than 0.006 (6) \AA; the Pd and methyl C atoms lie only 0.15 (1) and 0.08 (1) \AA out of this plane, respectively. The bond lengths and angles in the 1-methylimidazole ligand are similar to those already reported (Graves, Hodgson, van Kralingen \& Reedijk, 1978) and also to those in a variety of metal complexes of imidazole and its derivatives (Carmichael, Chan, Cordes, Fair \& Johnson, 1972; Phillips, Shreeve \& Skapski, 1976; Santoro, Mighell, Zocchi \& Reimann, 1969).

The imidazole ligands were found (Freeman \& Szymanski, 1967) to coordinate to metal ions via the pyridine N rather than the pyrrole N . The electronic 'pair' at $N(1)$ is the only pair which can be considered

Fig. 1. View of the coordination around palladium in trans$\mathrm{Pd}(\mathrm{NMeIm})_{2} \mathrm{Cl}_{2}$.

Table 1. Atomic parameters (U_{eq} values are $\times 10^{4}$) for trans-dichlorobis(1-methylimidazole) palladium(II)

$U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	$U_{\mathrm{eq}}\left(\AA^{2}\right)$
$\mathrm{C}(2)$	$0.3958(10)$	$0.1690(4)$	$-0.0718(6)$	$473(16)$
$\mathrm{C}(3)$	$0.6814(14)$	$0.3346(7)$	$-0.1184(9)$	$730(27)$
$\mathrm{C}(4)$	$0.3808(14)$	$0.3167(5)$	$0.0602(6)$	$647(23)$
$\mathrm{C}(5)$	$0.2141(13)$	$0.2351(5)$	$0.0921(6)$	$607(21)$
$\mathrm{N}(1)$	$0.2249(8)$	$0.1421(3)$	$0.0098(4)$	$422(12)$
$\mathrm{N}(3)$	$0.4967(9)$	$0.2737(4)$	$-0.0438(5)$	$521(15)$
Cl	$-0.0822(3)$	$0.0181(1)$	$-0.2275(1)$	$526(4)$
Pd	0.0000	0.0000	0.0000	$373(1)$

Table 2. Intramolecular bond distances (\AA) and angles $\left({ }^{\circ}\right)$

E.s.d.'s in parentheses.			
	$2.307(1)$	$\mathrm{Cl}-\mathrm{Pd}-\mathrm{Cl}$	$180 \cdot 0$
$\mathrm{Pd}-\mathrm{Cl}$	$2.011(4)$	$\mathrm{N}(1)-\mathrm{Pd}-\mathrm{N}(1)$	180.0
$\mathrm{Pd}-\mathrm{N}(1)$	$1.320(7)$	$\mathrm{Cl}-\mathrm{Pd}-\mathrm{N}(1)$	$90.2(1)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.340(7)$	$\mathrm{Pd}-\mathrm{N}(1)-\mathrm{C}(2)$	$125.9(3)$
$\mathrm{C}(2)-\mathrm{N}(3)$	$\mathrm{Pd}-\mathrm{N}(1)-\mathrm{C}(5)$	$127.6(4)$	
$\mathrm{N}(3)-\mathrm{C}(4)$	$1.372(8)$	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	$110.5(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.345(9)$	$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	$107.6(5)$
$\mathrm{C}(5)-\mathrm{N}(1)$	$1.373(7)$	$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$106.3(5)$
$\mathrm{N}(3)-\mathrm{C}(3)$	$1.47(1)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	$109.4(6)$
		$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(2)$	$106.2(4)$
		$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(3)$	$125.8(5)$
		$\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{C}(4)$	$126.4(5)$

unshared in the imidazole molecule. Since the electrons at $\mathrm{N}(3)$ are part of the aromatic sextet, the bonding of $N(3)$ to a metal ion is disfavoured and although bonding of the imidazole ring to metal ions via $\mathrm{C}(2)$ has been reported recently (Sundberg, Brian, Taylor \& Taube, 1974) it can be stated as a rule that neutral imidazole and its derivatives show, as the unique coordination position, that of the electron pair at $N(1)$, as has been observed in this compound.

The Pd atom is coordinated in a square-planar fashion to the Cl atoms and the N atoms. The $\mathrm{Pd}-\mathrm{N}(1)$ and $\mathrm{Pd}-\mathrm{Cl}$ distances of 2.011 (4) and 2.307 (1) \AA, respectively, are comparable with values found in related complexes (Fronczek, 1981; Bell, Hall \& Waters, 1966).

The dihedral angle between the plane of imidazole ring and the square plane around Pd is $134(1)^{\circ}$.

Fig. 2. A projection of the crystal structure along a.

The molecules are held together solely by van der Waals forces. There are no significant intermolecular interactions; the packing diagram is shown in Fig. 2.

Thanks are due to staff of the Computing Center of JEN (Madrid) for the facilities provided.

References

Bell, J. D., Hall, D. \& Waters. T. N. (1966). Acta Cryst. 21. 440-442.
Brouwer, J., Van de Putte. P., Fichtinger-Schepman. A. M. J. \& Reediu. J. (1981). Proc. Natl Acad. Sci. USA, 78, 7010-7014.
Carmichael, J. W., Chan, N., Cordes, A. W.. Fair. C. K. \& Johnson, D. A. (1972). Inorg. Chem. 11, 1117-1120.
Freeman, H. C. \& Szymanski, J. T. (1967). Acta Cryst. 22, 406-417.
Fronczek, F. R. (1981). Am. Crystallogr. Assoc.. Winter Meet. Vol. 9, Sec. 2, p. A 17.
Graves, B. J., Hodgson, D. J., van Kralingen, C. G. \& Reedis, J. (1978). Inorg. Chem. 11, 3007-3011.
International Tables for X-ray' Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Kauffman, G. B. (1976). Platinum Met. Rev. 20, 21-24.
Marcelis, A. J. M., Canters, G. W. \& Reedijk, J. (1981). Rec. J. R. Neth. Chem. Soc. 100, 391-392.

Navarro-Ranninger, M. C. (1979). J. appl. Cryst. 12, 254-255.
Nayarro-Ranninger, M. C. \& Gayoso, M. (1978). An. Quim. 74, 722-725.
Phillips, F. L., Shreeve, F. M. \& Skapski, A. C. (1976). Acta Cryst. B32, 687-692.
Santoro, A., Mighell, A. D., Zocchi, M. \& Reimann. C. W. (1969). Acta Cryst. B25, 842-847.

Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). The XRAY 70 system. Computer Science Center. Univ. of Maryland, College Park, Maryland.
Stone, P. J., Kelman, A. D. \& Sinex, F. M. (1974). Nature (London), 251, 736-737.
Sundberg, R. J., Bryan, R. F., Taylor, I. F. \& Taube, H. (1974). J. Am. Chem. Soc. 96, 381-392.

Acta Cryst. (1983). C39, 188-190

Structure of trans-Dichlorobis(2-methylimidazole)palladium(II), $\left[\operatorname{Pd}\left(\mathbf{C}_{4} \mathbf{H}_{6} \mathbf{N}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$

By M. C. Navarro-Ranninger
Departamento de Quimica Inorgánica, Universidad Autónoma de Madrid, Canto Blanco, Madrid-34, Spain

and S. Martínez-Carrera and S. García-Blanco
Departamento de Rayos X, Instituto de Química-Fisica 'Rocasolano', Serrano 119, Madrid-6, Spain
(Received 10 June 1982; accepted 19 October 1982)

Abstract. $M_{r}=341 \cdot 52$, triclinic, $P \overline{1}, a=7 \cdot 312$ (2), $b=7.558$ (6), $\quad c=7.413$ (6) $\dot{A}, \quad \alpha=123.85(5), \quad \beta=$ $113.04(3), \quad \gamma=66.40(3)^{\circ}, \quad V=304.0(4) \AA^{3}, \quad Z=$ 1, $\quad D_{x}=1.865 \mathrm{Mg} \mathrm{m}^{-3}, \quad \mu(\mathrm{Ag} K \alpha)=9.85 \mathrm{~cm}^{-1}$,

0108-2701/83/020188-03\$01.50
$F(000)=168, T=298 \mathrm{~K}$. The structure was determined by heavy-atom methods and refined to $R=$ $0.031, R_{n^{\prime}}=0.035$ based on 2162 independent nonzero reflections. The complex is trans square-planar. © 1983 International Union of Crystallography

